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Review: Lecture 4

m  Quantum States

Complex/probability/transition amplitudes

m Observables & Measuring

The observables are represented by Hermitian matrices

The possible results of a measurement are the eigenvalues of the
observable matrices. If the system is in the eigenstate, the measurement
result is guaranteed to be the related eigenvalue

Unambiguously distinguishable states are represented by orthogonal
vectors

The observing probability is the modulus square of the probability
amplitude

m  Dynamics
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The evolution of a quantum system is given by a unitary matrix
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Lecture 5: Composite
Systems

Tensor Product of Vector Space Assembling Systems

¢ Definition e Assembling classical probabilistic system
e Examples e Tensor product of state vectors and
e Properties operator matrices
* keynotes
Assembling Quantum System ez &
e The principle (cont.) o WR LG
e Entanglement and entangled states e EPRfEE
e Entangled composite spin system e Bell N &S
e keynotes o CHSHANEE 2
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1. Tensor Product

m Definition: tensor product

e V has a basis B={eye, e, ;}

n—1

> Avectorve V can be represented as v = Z C,e;

e V' has a basis B'={e), e/, ,e: .}

> A vector v' € V' can be represented as v' =

o v®uv' isdefined as

n—1 m—1

v —ZZ(C Xc;)(e;®e;)

1=0 j=
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1. Tensor Product

m Equation: tensor product for matrices
®: Cme’XCan’ _>(Cmn><m/n'

(A®B) (4, k) =A(j/n, k/n") XB(j mod n, k mod n')
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1. Tensor Product

m Example: tensor product of matrices

We will need to know not only how to take the tensor product of two vectors, but
also how to determine the tensor product of two matrices.'” Consider two matrices

bop bo1 bys
apo  do

A= and B=|b, by, b |- (2.172)
arn  an
bZ.[J b2.] b2.2

From the association given in Equation (2.165), it can be seen that the tensor prod-
uct A ® Bis the matrix that has every element of A, scalar multiplied with the entire
matrix B. That is,

boo boyr bo:z boo boyr boz aoo x boo dop x oy
oo | by by bys a1 | by Dby bys aon % bro apo x by
big Doy bas by by bys g X bap apgx by
A ® B= r 5 = = =
bog bo1 bos boo by1 boa ayp X% bop ayg x by
Ao | o by bia a1 | bio by bia arox bro arpx by
o by b2z ban b1 Doz aro X bao a1 x bz
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apo % bz
apg x by s
apg x by
ayg x by
ayp x bra

arop x b

ao,1 % bop
ag1 x by
ag1 x by
aypy x by
apy x by

a1 x bag

ap,1
ap 1
p 1
a1
a1

a1

x bo
% by
x by
% by

% by

% by

o1 % boz
apy x by s
apy x by
apy x by

ayy x b1

ay) % by
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1. Tensor Product

m Example: tensor product of vectors

from the association given in Equation (2.165) that the tensor product of vectors is

defined as follows:

2024/4/16

day -

iy |-b( -‘ ay -
)

!'J[]

anbo
ﬂ'ub|
aoh:
ayby
ap b
a1 b2
azby
ﬂ'gb|
a; b,
ashy
azb

azb

(2.166)
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1. Tensor Product

m Properties

e Associativity :
AR (BRC)=(A®B)®C

e Tensor product respects the adjoint :
(AQB) =Af® B

e Tensor product allows “parallel action” :
(AXv) Q@ (BXw) =(ARB) X (v w)
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2. Assembling Systems

m Assembling classical probabilistic systems

e Graphs and matrices

1

3

0 .

1
6

‘ Gy = 2 1

3 6

Red marble € {0, 1, 2} 2 5
'y,
1

W= (-]

(S]]
[ad | bt | — O —
o @~ oW

Q?
D -
1

® oo o N_{

= et
Blue marble € {a, b} 2

Wil Wk
1
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2. Assembling Systems

m State

e 3 states for Gy, system: 0, 1 and 2
e 2 states for Gy system: aand b

e 3x2=6 states in the combined system

m Exam ple [ Is this a tensor product of a 3 X1 vector with a 2 X1 vector ?}

Oa — 1 g ch e red marble being on vertex 0 and the blue marble being on
18 vertex a,

0b 0 0 chance of the red marble being on vertex 0 and the blue marble being on
vertex b,

la 2 E chance of the red marble being on vertex 1 and the blue marble being on
X = 18 |j‘> vertex a,

1b 1 % chance of the red marble being on vertex 1 and the blue marble being on
3 vertex b,

2a 0 0 chance of the red marble being on vertex 2 and the blue marble being on

1 vertex a, and
2b 5 % chance of the red marble being on vertex 2 and the blue marble being on

vertex b.
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2. Assembling Systems

m Dynamics

® Graph &F\)iation forset]

» Cartesian product Cartesian Product

1

R = {A,2,3,4,5,6,7,8,9,10,],0, K}
Oe

1 2
D
1 =
1 ; 1 1 S'_{ ’ ’ ;}
6 3 % 3
G =
<Ny e S = RO ((ATYMER Y, (3, D
6 } 3 A s | [aafies[iesias e 25 s [Bas Herm [lspw
U R AR R R RN R RIS R 18 o
J 5 e [Fe [ealies|ien|ianiealies [fae o [ty e
L)
9 4 3 b ?) o Lo FEFe v
' S v v [ive [t o e
$ $ 4 $ 1 i att| EXTag] o

L XX
4

R

-

<

- ™
LR B I A K N N
"y
ssee PPCE | @
o e

Gu X Gy ={(0,a), (0,b),(1,a),(1,b),(2,a),(2,b) }

e 5 v
AR S X RIR L " 34

v *: HERS BN EEN KRN R H .5 = olf <
comm——gy e ———

Source: {F3JZiC< Cartesian product >) https://www.jianshu.com/p/3c866bee7b5e
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2. Assembling Systems

m Dynamics

e Matrix
» tensor product M®N: ij

e Example

2024/4/16

MeN=1

oV [

(93 \S ]

=]

WIN W= Wity W=

W W=

W= Wk W= Wik

W= LI

D= =

LI =

M[i"i]xN[j". j]

1 2
12 12 |7
3 3 § 3 3
2 1| 6f2 1
3 3 3 3
12 12
3 3| 1|3 3
2 1| 62 1
3 3 3 3
12 12
3 3 0 3 3
2 1 2 1
3 3 3 3
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Oa
0b
la
1b
2a
2b

0a 0b
0 0
0 0

1 2

9 9

2 1

9 9

2 4

9 9

4 2

L 9 9

—
Q

DI Ol B = Sl 5=

Cl= ol = S Bl— 5l 5:

S © B H Q

S O =z xw
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2. Assembling Systems

m Dynamics

e Graph vs. Matrix

» Cartesian product Gy X Gx
» Tensor product M®N

e Example

«0b

=

elb

2ae o2b
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Oa
0b
la
16
2a
2b

0a 0b
0 0
0O 0
1 2
9 9
2 1
9 9
7 4
9 9
& 7
.9 9

I IR Ol= AN B\l= 5[ 5= E? I

Ol OIY al—= S F|—= Ffeo E;

© O HEhE-REEEN R

© o HRNRyREE R
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2. Assembling Systems

m Remarks

e States

» Tensor product from subsystems' state vectors
» Entangled states (more interesting!)

e Dynamics/matrices

» Tensor product from subsystems' dynamics matrices
» Other actions
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2. Assembling Systems

m Higher order assembling systems

e Assemble mn-vertex graph G
» Graph: with n™ vertices
G"=GxGx---xG

m times

» Matrix: size of n™-by- nm

ME" =Mg® Mg ® ---® Mg

m times
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2. Assembling Systems

m Keynotes

e A composite system is represented by the Cartesian
product of the transition graphs of its subsystems

e |f two matrices act on the subsystems independently,
then their tensor product acts on the states of their
combined system, i.e., M xv) ® (N*w) = (MQN) * (v® w)

e There is an exponential growth in the amount of
resources needed to describe larger and larger
composite systems

2024/4/16 {Quantum Computing)
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3. Assembling Quantum System

m Principle

2024/4/16

Assume we have two independent quantum
systems Q and @', represented respectively by
the vector spaces V and V'. The quantum
system obtained by merging @ and Q" will

have the tensor product V® V'as a state space.
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3. Assembling Quantum System

m Example

2024/4/16

The tensor product of vector spaces is associative, so we can progressively build
larger and larger systems:

VoVi®-  -®V. (4.93}

Let us go back to our example. To begin with, there are n x m possible basic
states:

|x0) ® |yo), meaning the first particle is at xy and the second particle at y.
|x0) @ |y1), meaning the first particle is at xy and second particle at y;.

|%0) ® |¥m—1), meaning the first particle is at xp and the second particle at y,,—;.
|x1) @ |yo), meaning the first particle is at x; and the second particle at y;.

|xi) @ |y;), meaning the first particle is at x; and the second particle at y;.

|X4—1) ® | ¥m—1), meaning the first particle is at x,,—; and the second particle at
Vin—1-

Now, let us write the generic state vector as a superposition of the basic states:

W’) = Cﬂ_ﬂlxﬂ) ® D‘h} +---+ Ci'.jlxi'} ® |y;) + -+ l‘:M'—l_n':r—l|xn'—l} ® |}'rn:r—l>-
(4.99)

which is a vector in the (n x m)-dimensional complex space C"*".

{Quantum Computing)
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3. Assembling Quantum System

m Entanglement

e The condition that a state vector of an
assembling system could not be written as the
tensor product of basic states of its

constituents.
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3. Assembling Quantum System

m Example: two-particle system

e Each particle is allow only two points

|$>:Co|$o>‘|‘01|$1> |y>:c()|yo>+clly1>

e The following state cannot be written as a

tensor product

[y = |z0) @ ‘yo> + |z ® ‘y1>

2024/4/16 {Quantum Computing) 20



3. Assembling Quantum System

m Example: two-particle system
e Why?
z) @[y

(Co [z0) + &1 |331>) & (C(,) |y0> + ¢ |y1>)

- |330> D |y0) —|—\:IZO> X |y
Heiedl 2> @ lyoy Hewellz) @ [y
= |z0) @ lyo) + 210 @ |y1)

= coci = 1o =0 and coch=cic; =1
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3. Assembling Quantum System

m Explanation

[P =|z0) @ |yo) + |21 @ |ys)

has a 50-50 chance of being found at the position x; or at x;. So, what if it is, in fact,
found in position x3? Because the term |xp) @ |y1) has a 0 coefficient, we know that
there is no chance that the second particle will be found in position y;. We must then
conclude that the second particle can only be found in position yy. Similarly, if the
first particle 1s found 1n position xy, then the second particle must be in position yy.
Notice that the situation is perfectly symmetrical with respect to the two particles,
1.e., 1t would be the same if we measured the second one first. The individual states
of the two particles are intimately related to one another, or entangled. The amazing
side of this story is that the x;’s can be light years away from the y;’s. Regardless of
their actual distance in space, a measurement’s outcome for one particle will always
determine the measurement’s ontcome for the other one.

2024/4/16 {Quantum Computing)

22



3. Assembling Quantum System

m Separable states
e States that can be broken into the tensor
product of states from the constituent

subsystems are called Separable states
[1V) = 1Ix0) ® [y0) + LIxo) ® [y1) + Llx1) @ |yo) + 1]x1) @ |»1)|

m Entangled states
e states that are unbreakable are referred to as
entangled states Il‘ﬁ} = |xp) @ |yo) + |x1) ® I}’1)|

2024/4/16 {Quantum Computing)
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3. Assembling Quantum System

m Entangled composite spin system

e Basic states
1r®@1tr, 1tr®Ilr L®1tr L@ R

e Entangled states

g
1 1L @ IR+ 4L ® 1r) // \

V2 % " ’<“7_\:\l —> (1 é@

\

Figure 4.8. Two possible scenarios of a composite system where
the total spin is zero.
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3. Assembling Quantum System

m Keynotes

e We can use the tensor product to build complex
quantum systems out of simpler ones.

e The new entangled system cannot be analyzed
simply in terms of states belonging to its
subsystems. An entire set of new entangled states
has been created, which cannot be resolved into

their constituents. C AN B 4\

=) )

h \. ¢
Just
| | BA®Ed )
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e EPR{FZIEI (1935)
n ZEHETBRIEEEE

o TAEM (LFAKEF) vs. BREAAERE
wUNIE

® J%EJZ

—

SERR KRS, HICWR:

2024/4/16

T (MR A EAUKE

%t (FRJRET

SBHTHUEEEE
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EHETFMUE (BFTWR) , FEREFERAKRZ LML, 20205
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4. tH8 7

m EPR{ER A.Einstein  B.Podolsky N. Rosen
=

o RAT (EHAIET)
> iR AFIBHEEZI4E, —EHNMEMEHFRFSERS
> |1 SNAREIE, NABHIIE

> SR 2. BNBRIIE
> R 3 RIELSR1F2, ERREBREREIIE
> FiP: BAREAREREALEHR ‘
— - FRL T
fE, / KL 3 N, #E,
sEEN: MEL A B NE
1EABUE, MEPREBNERSEOELEE, B7E, GRS >
https://www.qtumist.com/post/8389
L N B ]
ﬁ;ctgjg?/sv?v'vw.3?5%2?205%/5?5ﬁfw(t}g)o/%zg{f/;2*/113;%2]0%’]9}?5!_3 913772509.shtml ZHH £ LLE7)
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4. tH8 7

m EPR{ER A.Einstein  B.Podolsky N. Rosen
=

o [RA2 (BHAVEIRIEA, REE
> Rig: AMIBIEEZEE, —EHHINEHERRRGFFERS
> &1 MUARBIENE (TF)
» B 2: AATE, BRIBKEAT (L)
> (A AMIBIEMRIEIT, AMITRENETE(S?
> BT GEINEYRETARREAGEIREA, L o

> fRFR 2. [RTE

(A=Y / R \ (028
%’%ﬁ*—l— ?_;tl B A B ]_;'I]EB
1. EK%%; MR : EHETME (BTHR) , FERSFRAXZHRT, ALK »
2020
2. Umesh Vazirani, Lecture 1: Axioms of QM + Bell Inequalities, Lecture . -
note, CS294 ZHl fifa gy
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N

m [SEE SRR
o EFMERABERKEIENINY, BAIRRESCIERRL
FoBRE—ZlE (AEMERE) REF TR
(ANEEEFREARIER N A ERIRE S,
ARk, BITHEF—8)
o RMERNIERZERMA, WRILURKAIFHIAN
M ERIX LR ERY A REN ST 9(E
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4. 70 2 F f

m BellR&ER I\ SNBSS T A, BROEILE
N
o HHTA. BHYMZEME, RFEKIEFBER

o A, BZE, HHKER, ENKEREREL

> Pxx(L): MERXFSELLRIIFTS, FIxSREXRRIGFS,
%;Dﬂ;g/l\fv’f%@ﬁ, Pxx(LEHERA+1; &N, Pxx(DAYE
N

~

SEERE KRS, BIREFYE-7-N/RAZEL,, https://blog.sciencenet.cn/blog-677221-537543.html
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4. tHI8 7

m BellA~Z

+

I\ ENRAPAESRIFA, BRIBIE

AR TN ——

T ST A . B2
BRI, A, BT S R R I, |f‘>
BT LA BT IR, A

RO, RIRAH R

FPrz[= nl—nfn>3nd—nb-nt—nns = -1

Fiz = nl+tn?ni-ndnSb-—nb-—nf+ns

-nl nniHndHnbnE—nind

Fzv

Frv| = —nl+n?-nind-nbtnt-nT+nd

| Ax Ay Az |Bx By Bz| p | pxx(L)| Pxz(L) | Pzy(L) | Pxy (L)
(%) ( BX) |
1] + t|- - -Im| -1 -1 | -1 -1
2| - + |+ - - |n2 -1 +1 | -1 +1
3| = = # [+ # = |n3 -1 +1 | +1 -1
4|+ - + |- + - nd | -1 -1 +1 +1
5| + + - |- - + |nb -1 +1 +1 -1
6| - + - |+ - + |nb6 -1 -1 | +1 +1
A= + + +[n7 | 1 | -1
8 + - - |- + +n8| .1 +1 \ -1 +1
ABA & B iR &\ Fha] gt VYA A R R Z i E

SEFH: KRS, Bk
2024/4/16

BX R P ¥4

PxyfRR IR AT LA, My 75 7]
REMBI , EAIRF 5 AT EIAH S - $

SR H RN TT 1) R A —FF
Bl: n1=n2=..n8=1/8111f, A1
FPxy NO0. XPzyFlPxz, 15 2IAH[H
4518

=FMYE-7-I/RAZFEL,, https://blog.sciencenet.cn/blog-677221-537543.html
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Fix = nl—nnind—nb—-nb—ni-mns

Q N FPrz = —nltnZ+ni-nd+nb-nbt-ni+ns
4. ﬁ_aZ% Pzy = —nl-nZ+tni+nd+nb4nb—nT-ns

Fiv = nl+tni—nitnd-nbtnb—nT+ns

- BeIIZ' —t REX B BP9 1E
|P,,— P,,| =2|ny —ny —ng + ng
=2[(n2 +ns) — (n4+n)|
< 2(ny+ n,+ ng + ns)
= (my + g + nz + ny + 15 + ng + 1y 4 ng)
+ (-ny+ny —ns+ny—ns+ng—n; +ng)
=1+PF,

(ELMIOHER T, XEA BRI B NARR

SEER KRS, BEEFYEE-7-/RAZEL,, https://blog.sciencenet.cn/blog-677221-537543.html
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4. tH8 7

m Bel [ REFZURYIR R

o =NNEHMX, y, zZENEMR B AMIERIRIFFrIL

319, MEIRTR 1R 2R IERL 537
i, BIARRRERRTRE

1Sz

> ERRAIE T, WU NI FFTSR ARy Z AR RT3
o BellAFRIRM BRI T HREERAIR A 1T,

IX{ERSLSLIG FANA] BEST 2 i E

SERF: KRS, HTMR: EHEFHE (FHR)  PERZFRAKRF LML, 20205
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4. tH8 7

m CHSHAZEL
o ERHA, RIREFHUERIFE, —MERFTH
EF ISR EIRIIRY
o RIFMAEBRIMIIF, —1ERAlice, —4Bob,
AliceIIE755FQaER, BobilE/SAFHSEET,
JBEFRTTARENL (RTLABIEIERFRIGN) - HHE
BENSER—ER- 180+ 1P —

SE%K: yangdaixian, CHSHAZR LR SXTEF S5,
https://blog.csdn.net/yangdaixian/article/details/110287686
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g o

Bob

S
T

|+ |+

—(Q+R)S+ (R— Q)T , EHRMQ

HFIIEE TENRTF QS + RS+ RT — QT
S=0o0r(R-—Q)T =

N
u CHSHZ_T"-:_EE ERRTRER +1AI-189—F, AT (Q + R)
Zeea, (Q+R)S+(R—Q)T ==+2 , FHANgE=Rp

o FWMZERIF

> 3teAlice’IBob | s rs:rr-on)

o AlicelllZ7%

Q=qR=78=5T=t B9#HE, XN

= Zp(q, r,8,t)(qs + s+ rt — qt)

grst

< plgr,s,t) x 2

grst
=2

0 , BN, FAMLBEE
(¢;7,5,t) A
MEESHEENY, HfiTk— NEHIE:

» QorR
o BobME7E 8
> SorT E(QS+ RS+ RT — QT) = Zp(q, T, 8,t)qs + Zp(q, r, 8, t)rs
+ Zp(q, T, 8, t)rt — Zp(q, rys,t)qt

o FIARMITIARE

o NIELE- +
WELER-1 or +1 Hil, BTERAES E(QS) + E(RS) + E(RT)
HCHSHAZR, (BEHFFAR) .

yangdaixian, CHSHAZFIILIN BEXEFIFHITIHL,

qrst qrst

SEHR
https://blog.csdn.net/yangdaixian/article/details/110287686
{Quantum Computing)
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—EB(QT) <2, &

= E(QS) + E(RS) + E(RT) — B(QT)

ANERDAFRR
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4. tH8 7

m CHSHAZEI RIS
° iﬂlﬁb A (Q R) AILAE—1MF&RS LHAliceSThk
o WEFHME (S, T) FLME—1FESF EHBobZeRk
o AR NFRFEA LN TZEERBRIZANER

SERR KRS, HIOWR: ERHEFMUE (FTHR) [, FERIFESAKRE LML, 20205
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Conclusion

1. Tensor Product
» Tensor product allows parallel action

2. Assembling System
» Tensor product of states and acts, graphs and matrices

3. Assembling Quantum System

» Assembling of independent quantum systems have the tensor product
as its state space

4. HIEEZS
> WEBZS
> EPR{FZ
> Bell <&
> CHSHAZER
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